中等职业教育机电技术应用专业教学标准

1、概述

为适应机电应用技术行业发展升级需要,对机电、机床设备数字化、信息化、智能化发展新趋势,对接新技术、新发展、新模式下的机械、机电设备生产、调试及维修等岗位(群)的新要求,不断满足高科技服务领域的高质量发展对技术技能型人才的需求,推动职业教育专业化升级和数字化改造。所有课程全部实施课程思政,提高人才培养质量,遵循推进现代职业教育高质量发展的总体要求,参照国家相关标准编制要求,制订本专业标准。

本标准落实中职基础性定位,推动多样化发展,是全国中等职业机电应用技术专业教学的基本标准,学校结合区域/行业实际和自身办学定位,依据本标准制订本校机电应用技术专业人才培养方案,办出高水平、有特色的教育教学成果。

2、专业名称(专业代码)

机电技术应用 (660301)

3、入学基本要求

应、往届初中毕业生或同等学历者。

4、基本修业年限

三年

5、职业面向

所属专业大类(代码)	装备制造大类(66)					
所属专业类(代码)	自动化类(6603)					
对应行业(代码)	1. 通用设备制造业(34)					
N 应 1 址(代码)	2. 金属制品、机械和设备修理业(43)					
	2 (6-31-01-03)、机修钳工 (6-31-01-02)、					
主要职业类别(代码)	机电设备维修工(6-31-01-10)、 机床装调维修工					
	(6-20-03-01)					
主要岗位(群)或技术领域举例	机电设备及自动化生产线安装、调试、运行、维护,					
土女冈位(矸)以权不领域华例	机电产品维修与检测, 机电产品售后服务					

6、培养目标

本专业培养能够践行社会主义核心价值观,传承技能文明,德智体美劳全面发展,具有良好的人文素养、科学素养、数字素养、职业道德,爱岗敬业的职业精神和精益求精的工匠精神,扎实的文化基础知识、较强的就业创业能力和学习能力,掌握本专业知识和技术技能,具备职业综合素质和行动能力,面向通用设备制造行业,金属制品、机械和设备修理行业的电工、机修钳工、机床装调维修工、机电设备维修工等职业,能够从事机电设备及自动化生产线的安装、调试、运行、维护,机电产品维修与检测,机电产品售后服务等工作的技能人才。

7、培养规格

本专业学生应全面提升知识、能力、素质,筑牢科学文化知识和专业类通用技术技能基础,掌握并实际运用岗位(群)需要的专业技术技能,实现德智体美劳全面发展,总体上须达到以下要求:

- (1)坚定拥护中国共产党领导和中国特色社会主义制度,以习近平新时代中国特色社会主义思想为指导,践行社会主义核心价值观,具有坚定的理想信念、深厚的爱国情感和中华民族自豪感;
- (2)掌握与本专业对应职业活动相关的国家法律、行业规定,掌握绿色生产、环境保护、安全防护、质量管理等相关知识与技能,了解相关行业文化,具有爱岗敬业的职业精神,遵守职业道德准则和行为规范,具备社会责任感和担当精神;
- (3)掌握支撑本专业学习和可持续发展必备的语文、历史、数学、外语(英语等)、信息技术等文化基础知识,具有良好的人文素养与科学素养,具备职业生涯规划能力;
- (4) 具有良好的语言表达能力、文字表达能力、沟通合作能力,具有较强的集体意识和 团队合作意识,学习 1 门外语并结合本专业加以运用;
 - (5) 掌握机械制图、机械基础、电工基础、电子技术等方面的专业基础理论知识;
 - (6) 掌握电机与变压器、低压电器与 PLC、气动与液压传动等方面的专业理论知识;
 - (7)掌握机械拆装与调试技能,具有正确选择和使用各类常用工量具、仪器仪表的能力;
- (8)掌握电工、装配钳工、机床装调工、机电设备安装与调试等技术技能,具有机电设备安装调试、机床电气故障维修能力;

- (9)掌握自动化生产线安装、调试与运行维护技术技能,具有完成自动化生产线安装、调试、运行维护的能力;
 - (10)掌握信息技术基础知识,具有适应本行业数字化和智能化发展需求的基本数字技能;
 - (11) 具有终身学习和可持续发展的能力, 具有一定的分析问题和解决问题的能力;
- (12)掌握身体运动的基本知识和至少 1 项体育运动技能, 养成良好的运动习惯、卫生习惯和行为习惯: 具备一定的心理调适能力:
- (13) 掌握必备的美育知识,具有一定的文化修养、审美能力,形成至少 1 项艺术特长或爱好;
- (14) 培育劳模精神、劳动精神、工匠精神,弘扬劳动光荣、技能宝贵、创造伟大的时代精神,热爱劳动人民,珍惜劳动成果,具备与本专业职业发展相适应的劳动素养、劳动技能。

8、课程设置及学时安排

8.1 课程设置

主要包括公共基础课程和专业课程。

8.1.1 公共基础课程

按照国家有关规定开齐开足公共基础课程。包括:语文、数学、英语、信息技术、历史、中国特色社会主义、心理健康职业生涯规划、哲学与人生、职业道德与法治、艺术、劳动教育、体育与健康等。

8.1.2 专业课程

(1) 专业基础课程

包括机械基础、机械制图、机械设备控制技术、金属加工与实训等领域课程。

(2) 专业核心课程

包括:气动与液压传动、传感器技术应用、电机与变压器、低压电器与 PLC、电气识图、电力拖动控制线路、机电设备安装与调试等,主要教学内容与要求:

序号	专业核心课 程	典型工作任务描述	主要教学内容与要求
		①根据各种气动、液压元件图形符号	①掌握气动与液压系统的基本
1	气动与液压	和回路图选择气动、液压元件并安装。	原理。
1	传动	②根据生产要求设计绘制气动、液压	②能识读和绘制常用气动与液
		系统图。	压元件图形符号。

		③气动、液压系统安装、调试、使用	②能读懂气动与液压基本回路
		及常见故障处理。	图,并能根据回路要求选择适合
			的气动、液压元件能排除气动、
			液压回路简单故障。
			①理解和熟悉常用传感器的工
		1 ①正确选用常用传感器。	作原理、基本结构及相应的测量
	- - 传感器技术		电路和实际应用。
2		②常用传感器的接线、线路检测与故 除 4 用	
	应用	障处理。 (2) A NI L 任 田	②了解新型传感器的工作原理
		③ 检测与使用新型传感器。	及应用,掌握常用传感器的测量
			方法。
			(1)掌握变压器、异步电动机、直
		①检测常用电动机、变压器。	流电动机的结构、原理、主要特
3	电机与变压器	②变压器的单机、联动运行。	性、使用和维护知识。
		③电动机的运行、调速、制动。	②理解同步电动机和特种电动
	和中	4 常用电动机、变压器故障诊断与排	机的基本概念。
		除。	③能进行电动机的故障判断、分
			析和处理。
			①掌握常用低压电器使用方法
			及基本电气控制线路连接方法
			②了解 PLC 编程与接口技术、
		①低压电器检测与故障处理。	常用 PLC 的结构
	低压电器与	②根据电路图正确安装电气控制系统	③掌握常用 PLC 的 I/O 分配
4	PLC	③用编程软件编制 PLC 程序。	及指令,会使用编程软件
		④PLC 的运行及故障检测。	④能根据需要编写简单 PLC 应
			用程序
			 (5)能对 PLC 控制系统进行安
		(1)电气控制线路图的识读和绘制	(1) 掌握电气图样的识图方法
5	电气识图	②电子线路图的识读与绘制	②掌握电气图样中的各种电气

		③根据电气原理图查找电气元件实物,并能处理相关电气故障	元件图形符号的含义 ③掌握典型电气图样和电子线 路图样的绘制方法
6	电力拖动控制线路	①安装机床电气线路 ②安装普通机床电气控制线路 ③判断与排除机床常见故障	①了解低压电器元件的结构、使用规范,能对常用低压电器进行安装及性能检测②理解常用普通机床电气控制线路的原理,能完成线路安装③能根据故障现象、电路图,检测常用普通机床的常见电气故障,并能排除故障
7	机电设备安装与调试	①核对并检测机电设备零部件 ②连接并预调试电气线路 ③安装并调整机械装置 ④安装并调整液压传动与控制系统 ⑤连接并调试机电设备各系统 ⑥判断并排除机电设备常见故障	①能熟练运用工具对机电设备的机械部分进行组装②能识读电气、液压、气动原理图或接线图,并对电气控制线路及气路进行连接与调试③能读懂较复杂的控制程序,并能设计简单程序使系统正常运行④能排除系统的机械及电气故障

(3) 专业拓展课程

包括自动化生产线安装与调试、变频器技术、工业机器人离线编程与仿真等。

8.1.3 实践性教学环节

实训: 在校内外进行维修电工、电子装配与焊接、钳工、机械加工、电气线路安装与维修等实训,包括单项技能实训、综合能力实训、生产性实训等。

实习:在通用设备制造行业、机械设备修理行业的通用设备制造、机械和设备修理企业进行实习,包括认识实习和岗位实习。学校应建立稳定、够用的实习基地,选派专门的实习指导教师和人员,组织开展专业对口实习,加强对学生实习的指导、管理和考核。

8.1.4 相关要求

根据思政课程要求,开设安全教育(含典型案例事故分析)、社会责任、绿色环保、新一代信息技术、数字经济、现代管理等方面的拓展课程或专题讲座(活动),并将有关内容融入专业课程教学中;组织开展德育活动、志愿服务活动和其他实践活动。

8.2 学时安排

课程	课程	课程夕秋 学 学	理	分比	各学期课时分配情况						考核方 式					
类	编	课程名称	学时	分	论	论	1	实践	1	2	3	4	5	6	考	考
别	뮺						20	20	20	20	20	20	试	查		
	1	语文	200	10	140	60	4	4			4	2	√			
	2	数学	200	10	140	60	4	4			4	2	√			
	3	英语	200	10	100	100	4	4			4	2	√			
	4	体育与健康	200	10		200	2	2	2	2	2	2		√		
公	5	中国特色社会主义	40	2	20	20	2									
共必	6	心理健康职业生涯 规划	40	2	20	20		2						√		
修	7	哲学与人生	40	2	20	20			2					√		
课	8	职业道德与法治	40	2	20	20					2			√		
	9	信息技术	80	4		80	2	2						√		
	10	历史	80	4	80	0	2	2						√		
	11	艺术	40	2	20	20			2			2	√			
	12	劳动技能	40	2		40			2	2				√		
专	13	机械制图	160	8	60	100			6				√			
业	14	电工电子技术基础	160	8		160	4						√			
基础	15	机械基础	160	8	60	100	6						√			
课	16	金属加工与实训	160	8		160		4					√			
	17	气动与液压传动	160	8	100	60			6				√			
专业核、	18	传感器技术应用	160	8	60	100				4			√			
心课	19	机械加工技术	160	8	60	100				4	6			√		
	20	低压电器与 PLC	160	8	80	80						6	√			

	21	机械设备控制技术	120	6		120		6					√	
	22	机床电气线路安装 与维修	120	6	20	100			4	4	4	4	√	
	23	机电设备安装与调 试	120	6		120					4	4		√
专业	26	自动化生产线安装 与调试	80	4		80			6				√	
拓	27	变频器技术	80	4		80				4				√
展课	28	AutouCAD 上机指 导	80	4	10	70						6		√
	29	综合实践	220	11		220				10				
课程合计		3300	165	990	2310	30	30	30	30	30	30			

9、师资队伍

按照"四有好老师""四个相统一""四个引路人"的要求建设专业教师队伍,将师德师风作为教师队伍建设的第一标准。

9.1 队伍结构

- 1. 所有专任教师队伍的数量、学历和职称符合国家有关规定。
- 2. 学生数与任课教师数比例不高于 20:1。
- 3. 整合校内外优质人才资源,选聘企业专业技术人员担任产业导师,组建校企合作、专兼结合的教师团队,建立定期开展专业(学科)教研机制。

9.2 专业带头人

- 1. 具有教师资格证书;同时具有机械设计制造及其自动化等相关专业本科及以上学历;
- 2. 具有较强的实践能力,了解国内外机械相关行业发展新趋势,准确把握行业企业用人需求,在本专业改革发展中起引领作用。
 - 3. 优先选用具有高级专业技术职务和"双师型"教师。

9.3 专任教师

- 1. 具有教师资格证书: 同时具有机械设计制造及其自动化等相关专业本科及以上学历:
- 2. 具有本专业理论和实践能力;能够落实课程思政要求;能够运用信息技术开展混合式教学等教法改革;

10、教学条件

10.1 教学设施

班级为配备有多媒体设置的标准教室。

有专业的实训场地,需要进行实践操作的专业课程采用专业实训室上课模式,根据要求 配备多媒体教学设备及理论学习的相关教具。

10.1.1 专业教室基本要求

配备黑(白)板、多媒体计算机、投影设备,具有互联网接入或无线网络环境。安装应急照明装置并保持良好状态,符合紧急疏散要求,安防标志明显,保持逃生通道畅通无阻。

10.1.2 校内外实验、实训场所基本要求

配有校内机电实训室,基本能够满足实验、实训教学需求。实训室严格按照机电专业实训 指导要求布置专业实训教学设备。

机电实训室内配有实训台、电烙铁、烙铁架、静电手环、焊锡丝、镊子、斜口钳、尖嘴钳、插件电路板、贴片电路板、吸锡枪、色环电阻、二极管等电子元器件、万用表、示波器、信号源、直流电源、指针万用表、剥线钳、螺丝刀(一字和十字)、变速器、台钳、平带,带轮、直齿圆柱齿轮,斜齿齿轮,锥齿轮等。可以进行本专业实操教学。

对于本专业 AutoCAD 和 PLC 技术课程,利用计算机综合实训室的投影、白板、计算机、交换机、网络等,安装有 AutouCAD2022 和 STEP-7MicroWIN V4.0 SP9 等教学需要的软件,可以进行本专业专业课程和软件操作的实验教学。

10.1.3 实习场所

符合《职业学校学生实习管理规定》《职业学校校企合作促进办法》等对实习单位的有关要求,经实地考察后,确定合法经营、管理规范,实习条件完备且符合产业发展实际、符合安全生产法律法规要求,与学校建立稳定合作关系的单位成为实习基地,并签署学校、学生、实习单位三方协议。

根据本专业人才培养的需要和未来就业需求,实习基地应能提供机电技术应用专业对口的相关实习岗位,能涵盖当前相关产业发展的主流技术,可接纳一定规模的学生实习;学校和实习单位双方共同制订实习计划,能够配备相应数量的指导教师对学生实习进行指导和管理,实习单位安排有经验的技术或管理人员担任实习指导教师,开展专业教学和职业技能训练,完成实习质量评价,做好学生实习服务和管理工作,有保证实习学生日常工作、学习、生活的规章制度,有安全、保险保障,依法依规保障学生的基本权益。

10.2 教学资源

主要包括能够满足学生专业学习、教师专业教学研究和教学实施需要的教材、图书及数字化资源等。

10.2.1 教材选用

按照国家规定,经过规范程序选用教材,优先选用国家规划教材和国家优秀教材。公共基础课统一采用高等级教育出版社出版的中等职业学校教材,专业课统一采用中等职业教育新形态一体化教材。

10.2.2 图书文献配备

包括:行业政策法规、行业标准、职业标准、工程手册、培训教程、专业理论等技术 类和案例类图书,以及职业技术教育、机电技术应用涉及业务领域的专业学术期刊等。及 时配置新经济、新技术、新工艺、新材料、新管理方式、新服务方式等相关的图书文献。图书文献配备能满足人才培养、专业建设、教科研等工作的需要。

10.2.3 数字教学资源配置

建设、配备与本专业有关的音视频素材、教学课件、数字化教学案例库、虚拟仿真软件、数字教材等专业教学资源库,种类丰富、形式多样、使用便捷、动态更新、满足教学。

11、 质量保障和毕业要求

11.1 质量保障

- 1. 学校每年修订专业人才培养方案。根据方案要求完成教学计划,建立"5E"课堂管理要求。
- 2. 完善机电技术应用专业教学管理机制,每日巡课,每周听课、每月学时学考加强日常教学组织运行与管理,定期开展课程建设、日常教学、人才培养质量的诊断与改进,建立健全巡课、听课、评教、评学等制度,建立与企业联动的实践教学环节督导制度,严明教学纪律,强化教学组织功能,定期开展公开课、示范课等教研活动。
- 3. 专业教研组织应建立集中备课制度,定期召开教学研讨会议,利用评价分析结果有效改进专业教学,持续提高人才培养质量。
- 4. 学校应建立毕业生跟踪反馈机制及社会评价机制,并对生源情况、职业道德、技术技能水平、就业质量等进行分析,定期评价人才培养质量和培养目标达成情况。

11.2 毕业要求

- 1. 修完计划规定的所有课程和实习环节,完成教学规定考试;
- 2. 通过学校规定的学生德育操行测评;
- 3. 获得一项以上职业资格技能证书。